F9B: The Illustrated Series








Download the Webzine “The Role of Science, Technology, and GMOs



Transcript:


Hello, my name is Evan Fraser and I work at the University of Guelph in Ontario Canada. This is part of a series on how to feed the world’s growing population.


One of the most controversial aspects of the food system today is biotechnology. One type of biotechnology is called Genetic Modification and happens when scientists manipulate a plant’s (or animal’s) DNA. This can happen in a number of ways. For instance, a scientist may move a gene from one species to another in order to give the original organism some special trait such as the ability to withstand drought.


Supporters think creating genetically modified organisms – or GMOs – is necessary to ensure our crops are productive and resilient enough to provide adequate food in the future. Others think GMOs are unleashing a range of serious social and environmental problems. 


Let’s start with the arguments in favour of GMOs. Some scientists claim that GMOs will allow us to create new super crops that will be 50% more productive than current ones. And that this is necessary to meet the demands of our growing population that will require about 70% more food by 2050.


But critics disagree. One problem is that most GM varieties available today were not created to be more productive, or withstand drought, or use nutrients more efficiently, but were designed to be resistant to one particular herbicide called “Roundup.” “Roundup ready” corn, cotton and soy seeds are extremely popular with farmers especially in North America because they allow farmers to plant a field with this “roundup ready” seed and then spray the entire field with roundup to kill weeds. This kills the weeds but does not harm the crop. 


But roundup has led to at least two problems. The first is that these seeds and sprays cost money. And so poor farmers often go into debt to buy inputs like roundup and GM seeds. But if these crops ever fail, poor farmers struggle to pay back their loans. In India alone, well over 100,000 farmers have committed suicide in the last 10 years because of such debts. So many critics point out that biotechnologies like roundup-ready seeds benefit corporations more than they help farmers.


A second problem is that roundup has become so popular that weeds are developing a resistance to this spray. This is because in any weed population a small number of individual plants may be resistant to the spray. By using roundup too often, farmers kill off everything but those weeds that are immune. And in doing so, super weeds have evolved, becoming a major problem for farmers and ecosystems alike.


But do these problems mean we should reject biotechnology entirely? I don’t think so. But I do think that we should always investigate whether low-tech solutions exist to problems before we start thinking about such high-tech strategies as moving genes between species.


For instance, in large parts of the developing world a lack of phosphorus in the soil limits yields. But in India a traditional variety of rice called Kasalath is able to grow without much phosphorus. In 2012, scientists figured out how Kasalath’s amazing ability works and are now using a scientific method called “marker assisted plant breeding” to move the gene responsible for this trait this into other rice varieties. This illustrates the potential for biotechnologies that avoid many of the problems associated with GMOs.


But there other even simpler stories about how science and technology can play a major role in feeding the future. Take the case of the geneticist Manish Raizada who works at the University of Guelph and has spent part of his career using GM techniques to understand how plants function. Unlike a lot of plant geneticists, instead of starting in the lab, Manish begins his research by talking to farmers in the developing world to identify what they actually need. While working with farmers in Nepal with a local organization called LI-BIRD, his team found that farmers traditionally plant grain by scattering handfuls of seeds into the dirt. But by simply planting seeds in orderly rows, Manish’s collaborators showed farmers they could increase yields by 25-40%.


This is because evenly spaced seeds have equal access to soil nutrients, moisture and sun light. This team developed an elegantly simple tool kit to make it easy to plant in rows: two sticks and a string to mark lines in the ground, and a hollowed out stick drops one seed at a time into the prepared earth. It’s the perfect marriage of science and locally appropriate technology.


The moral of this story is that of the fly swatter versus the Cruise missile – we should always look to see what fly swatters are at hand before we launch a cruise missile.


But that’s all for now. If you are interested in learning more, you can check out my recent book Empires of Food. Also, you can find me on YouTube, Facebook and Twitter where I regularly post about issues relating to global food security. The website http://www.feedingninebillion.com hosts annotated scripts for all the videos along with references and a blog.


I hope to see you again, but until then, thanks for watching!